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‘rHE IfURAMOTO-SIVASHINSKY EQUATION:
S~ATIO.TEMpORAL CHAOS AND INTERMITTENCIES FOR A

DYNAMICAL SYSTEM

Basil Nicolaenko
Center for Nonlinear Studle- and Theoretical Dlvloion

Loa Alamo- National Laboratory

Loo Alamom, New Mexico 87646, U.S.A.

ABSTRACT

We survey some recent results on the finite-dimensional behavior of the Kuramoto-

Siv~hinsky equation. We outline how it is rigorously equivalent to a finite dimensional

dynamical system on a finite “inertial” manifold; a geometric approach to the construc-

tion of such a manifold is given. We give sor.le examples of computational simulations

supporting the evidence for a low-dimensional vector field which rules the bifurcations of

the inertial manifold,
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I. INTRODUCTION

During the last decade we have seen anumberof major developments which show that

the long-time behavior of solutions of a very large clam of partial differential equations

(PDEs) possess a striking resemblance to the behavior of solution of finite dimensional

dynamical systems, or ordinary differential equations (ODES). The first of these advances

was the discovery (by a number of researchers) that a dissipative PDE has a compact,

maximal attractor X with finite Hausdorff and fractal dimensions. More recently [6, 12-15]

it was shown that some of these PDEs possess a finite dimensional inertial manifold, i.e.,

an invariant manifold that contains the attractor Xi For the later equation, the connection

with ODES is no longer a mere resemblance, instead it haa become a striking reality! The

re-on for this is that where one restricts the PDE to the inertial manifold one obtains an

ODE, which we call an inertial form for the given PDE. Since an inertial manifold contains

the universal attractor, this means that the long-time behavior of solutions of a PDE with

an inertial manifold is completely determined by the inertial form.

There is, indeed, a class of phenomena of incipient turbulence which can be modeled

by scalar field PDEs undistinguishable i prutice from dynamical systems: weak tur-

bulence on interfaces between complex flows, upon which appear well localized patterns

and structures. Such are quasiplanar flame fronts; thin viscous fluid films flowing over

inclined planes; and even, under some conditions, dendritic phase change fronts in binary

alloy mixtures [30-31, 38, 4CL42]. In such physical contextl~, the onset of destabilization of

the simplest Iaminar regime is heralded by the cohesive m,~anization of cells and patterns

(often hexagonal) on the moving and buckling front or intc rface.

Many such interfaces with localized turbulence, includin~l flames, can be modeled by the

simple KuramotmSivaahinsky (K-S) PDE [33-36, 38]. This equatimi accurately accounts

for the thermo-diffusive and convective mechanics of flow-Field coupling acrosm an interface

before turbulence breaks away from the interface and reachel deeply into the fluid,

In one space dimension, the K-S equation modeling a sxnall perturbation u(x,t) of a

metastable planar front or Interface In

q + vu.,,, + Umm+ ;(u.)2 = O , (z, t)#R1 X ~+,

(l.l)
U(z, o) - Uo(z) , U(z + L) - U(CIt)

Here the subscripts indicate partial differentiation, v is a pos tive fourth-order viscosity

and u,, is L-periodic; L being the size of a typical pattern seal!. The natural bifurcation

parameter is the renormalized dimensionless parameter Z= L/(211 @).

of linearly unetable Fourier modes, where the symbol [ ] desigl ~ateo

real number,
a

[Z]is also the number

the integer part of R



In a previous work ourcompu~er simulations of the K-S equation [28] demonstrated

an uncanny, low-dimensional behavior for the values of the bifurcation parameter up to Z

= 3.67 (L = 23.1). A low dimensional structure does also underline an example of onset

of chaus at ~ = 5.42 (L = 34.05). In general, the attracting solution manifolds undergo a

complex bifurcation sequence including multimodal fixed points, invariant tori, traveling

wave trains and homoclinic orbits. Moreover, amidst lengthy and complex chaotic time

seriee, puzzling intermittencies do occur at random: these are protracted oscillations in a

small neighborhood of some metaztable state. We coq”ectured in [28] that such a behavior

shudows a perturbed homoclinic orbit and betrays a hidden underlying low-dimensional

dynamical system.

The long time behavior of such smooth dissipative differential systems is characterized

by the presence of an universal attractor X toward which all trajectories converge. The

structure of X may be very complicated even in the case of simple ordinary differential

equations: X may be a fractal on parafractal set. Ln the case of dissipative partial differen-

tial equations, although the phase space (i.e. the function space) in an infinite dimensional

space, X has finite fractal dimemion (see [2-5] [41-42]). However, the already possibly

complex nature of X is in this case further complicated by the infinite number of degrees

of freedom of the ambient space. In the case the dissipative system admits an inertial

manifold the attractor is dynamically embedded in a finite dimensional manifold and thus

becomes the attractor of a dynamical system with a finite number of degreea of freedom.

Since [28], it haa indeed been demonstrated that the K-S equations are rigorously

equivalent to a finite-dimensional dynamical system. The approach (introduced in [12-15])

consists in constructi:lg a finite dimensional Lifschitz manifold z (called inertial] in the

phaae space of the PDE such that:

(i) ~ is invariant and hae compact support; that is if (~(t, .)),20 is the nonlinear semi-

group associated with the initial value problem for the equations, then s(t, ~) is contained

In ~ for all t 20.

(ii) All solutions converge exponentially to ~. In particular, the univeroal attractor,

X, IS included in ~ and the dissipative system reduces on z to a finite system (called an

inertial ODE).
(iii) MYmptotic completeness holds: for every initial value for the full K-S equation,

there exists Borne initial point on the inertial manifold ~ dccreaaes exponentially to zero

[%
The lad point doez fully establish the equivalence between the PDE and the inertial

ODE on xi Concrctcly, given a chaotic trajectory for the exact PDE, we can fhd a finite

dimensional chaotic trajectory for the inertial ODE, such that the two trqjectorieu converge

exponentially.
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The existcnceof such an inertial manifold has been demonstrated [6, 14, 15, 37] for

!Ec “K-Sequation with Neumann boundary conditions. In similar results hold for a PDE

model of 2-D weak turbulence in Kolmogorov shear flows [8].

Hence, weak turbulence on interfaces modelled by the K-S equation is strictly equiva-

lent to chaos for a finite inertial dynamical system. Still, weak spatimtemporal turbulence

involvea complex mechanisms within the bifurcations of the inertial manifold. To unravel

these, we must obtain a clear picture of those few nonlinear states (spatial structures)

which form a reduced nonlinear coordinates b~yis for the manifold. A nonlinear represen-

tation of the inertial manifold must be constructed, based on ~educed coordinates patches,

with the goal of establishing reduced, low-dimensional, inertial normal forms for the iner-

tial ODES, valid for some range of the bifurcation parameter. These inertial normal forms

control the global vector field bifurcations into weak turbulence and ultimately account

for the universality of transition to chaos in infinite dimensional systems.

In this conference presentation, we propose to give a partial survey of the qusstions

raised above, in the context of the K-S equation, Rather than another catalogue of bifurcw

tions, we establish that successive transitions to chaos and intermittent relaminarizations

are ruled by the stable and unstable manifolds of a small number of nonlinear states. This

reduced representative sample changea along with the bifurcation parameter; its dimen-

sionality is much smaller than the rough estimatea for the dimension of the inertial manifold

obtained in [6, 1+15]. In part HI, we evidence such low dimensional canonical vecto~ field

bifurcations for regimes within 23.1 s L <34.05 (3,67 s ~ s 5.42, where [~] is the number

of unstable modes); for such regimes, the fractal dimenoion of chaoa does not exceed S. We

have systematically searched for classical dynamical systems bifurcations and for multiple

basins of attractions for the K-S model. We used a general PDE solver code developed by

J. M. Hyman at LANL [29, 30]. The interactions of multiple basins through their frac-

talized boundaries have been evidenced. Intermittencies in turbulent time series are ons

of the key mechanisms in bridging the gap between PDEs and dynamical systems. They

enable us to track the unstable manifolds of key hyperbolic points. These intermittencies

are random time windown where dynamics remain highly oscillatory yet are confined in a

relatively small neighborhood of some metaatable point or circle. Such critical states are

the natural candidate for local nonlinear coordinate of the inertial manifold.

In part IV, we survey an intrinsic geometric comtruction of Inertial manifolds, inspired

by the exponentially faut lock-up of dynamical trajectories onto such manifolds. This

surveys joint work with P. Constantine, C. Foiau and R, Temam [6]
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II. OVERVIEW OF COMPUTATIONAL SIMULATIONS AND THEORETICAL RESULTS

We have normalized the K-S equation to an interval of !.ength 2x; set the daxnpingpz+

rameter to the original value derived by Sivashinsky, w= 4, and introduced the bifurcation

parameter a = 4Z2= U/4X2. The equation can now be written aa

* + 4U.==S + a[u== + ~(u=)a] = O , 0 S z S 2r,

(2.1)
U(S + 2#, q = U(z, t) , U(z, o) = Uo(z) “

This equation is equivalent to Eq. (1.1) with a different time scaling.

The mean value of the solution to Eq. (2.1)

/

aw
m(t) = ; U(ZIt)dz

o

satisfies the drift equation

/

am
h(t) = -: (u=)’dz.

0

To normalize this drift to zero, we numerically solved

U(Z,t) = U(ZIt) - m(t).

That is, the drift-free K-S equation is

.

(2.2)

(2.3)

the equation for

(2.4)

q + h===.+ a[ua, + ~(u.)a] + h(t) = O. (2.5)

we have scanned the domain 54s a s !J20, i.e., 3.67< r s @I.fJS,2s.6 < L < s6.2. Many previous

investigations have solved Eq. (1.1) on an interval [O,L], with viscosity u = 1 [311. Our

resealed time t in (2.1) and the usual unnormalized time tp~v, are related through:

:~h., = 4z4t = a2t/4; (2.0)

the resealing grown quadratically in a. The bifurcations diagrama (Fig. 1, 2, 3) were

obtained by scanning in a and varying initial data.

ln our computer experiments, we found that high precision wau necessarybecause of

the extreme sensitivity of the simulations to numerical accuracy. Ncmconverged numerical

solutions of Eqa. (1.1) and (2.1) can occur in regimes we are interested In if the time

integration errora are greater than 10-’ per unit tlmeutep. In fact, small effects of the order

of 10-8 in the energy for some sensitive Fourier modes critically impact on the nonlinear

dynamics. To alleviate this, we use in our calculations high-precision, pseudospectral

approximation to the spatial derivativea [9, 10] and a variable timwtep, variableorder

integration method in time to keep the solution errors between 10-’ and 10-’0 per unit
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time [29, 30]. The PDE solver was an all purpose code developed by J. M. Hyman at

LANL [29, 30].

A typical example of the extreme numerical sensitivity of the numerical solutions to

the K-S equation is the disappearance of homoclinic orbits if the precision is too low. The

hyperbolic fixed points degenerate into stable fixed points with a numerically artificial

basin of attraction the size of the error control. Because of the artificially stable fixed

point, our numerical results of the K-S equation differ from some of the previously pub-

lished simulation that relied on second-order schemes with only modest control over time

integration emors.

We systematically tracked the domains of stability of each attractor with respect to

the bifurcation parameter by varying a and reinitializing V(X,O)to the final solution from

the previous run with a different a. Many problems were recalculated several times with

different grid resolutions and time truncation error criteria to ensure that the numerical

solutiom were converged within an acceptable accuracy.

A remarkable feature of the K-S equatiom is the alternating sequence of intervals in

a containing laminar behavior (some 6xed point is ultimately attracting) with intervals of

persistent oscillatory and/or chaotic behavior. Let ~j = [aj, aj+i] be tile ~’h interval. Then

IO= [o,a,], where at a, cornea the first Hopf bifurcation; a classical pitclfork steady-state

bifurcation occurs at a = 4< al. For j even, ~j is characterized by the ultimate decay to a

globally attracting fixed point tic(z),~ = (j/2)+1, j 2 z. These fixed points have most of their

energy concentrated in a cos qx mode. The higher harmonics appear with exponentially

decreasing energy and the fixed point haa a lacunary Fourier expansion:

tiq(z) =al,cosqz + maqcoa2qz
(2.7)

+ e2a3Qco49qz + o‘’ + em-lamtcomqz +‘’ m‘

where q = j/2 + 1. Numerically, we have found that al, b O(1) and c ~ 10-’. We call these

sinke sasoc iated with {j, j even, cellular statea. When the Fourier expansion (2.7) of a

cellular state is dominated by coa qx aa we call it a q-mods! cellular state.

These relaminarization intervals li, j even, are consistent with experiments at small and

moderate Reynolds numbers [40]. Moreover, as j and a increaae, the ultimate decay follows

long periods of trannient chaoe. Transient thaw is observed in the K-S equations beginning

in the interval 14, provided enough modes are excited in the initial data. Moreover, sa a

incremes, the mean lifetime of transient chaoo increaaes exponentially in ~: this growth

makes transient chaotic intervals undistinguishable in practice from

the strongly chaotic regimen (say, when the fractal dimension of tho

X, for the flow is large, rfimr(x) > 10).

e

chaotic intervals in

universal attractor,



When j is odd, the intervals I; have persistent oscillatory and/or chaotic behavior. For

moderate values of a (say, up to L), the quasiperiodic and/or chaotic behavior refiectg a

competition between the previous (j + 1)/2 cellular state, dominated by the cm((j + l/2)z)

mode, and the (j+ 3)/2 cellular state, dominated by cos((j + 3/2)z). This competition createe

a complex interplay between temporal chaos and spatial coherence. In some sense, the

(low-dimensional) temporal chaos corresponds to adjustment from one (low-dimensional)

space pattern to the next one. Unfortunately, this simple picture is not borne by our

computations at strongly chaotic regimes (diww (X) > 6) where a zoo of strange hyperbolic

fixed points appear in intermittencies. Their strangeness resides in that they are not

cellular in the sense of (2.7) and possess a broad energy spectrum band covering all the

unstable modes up to [~].

Finally, the best current estimate [15] on the dimension of ~, the inertial manifold for

Eq. (2.1) is:

dim(~) < cal”’s , (2.8)

which is still too large when compared to the upper estimate of the fractal dimension of

the universal attractor X obtained in [36]:

df (X) < caom’s . (2.9)

The severe numerical sensitivity of the K-S equation demonstrates that the dynamics of

the inertial ODE and the bifurcations of the inertial manifold are very semitive to the

accuracy of numerical algorithms. Conventional PJ)E algorithm do not carry over.
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III. LOW DIMENSIONAL CHAOS FOR THE KURAMOTO-SmASHIFJSKY EQUATION

In thin section we deocribe the behavior of the solutions to the K-S equation for parameter

duee h the intervahi 14,J&,1.,54 c u < 117.5, that ie 3.67 c ~ < 5.42,23.1< L s 34.o5. The

windows II (oscillatory, 17.3< CI< 22.&)Jz (Z-cell state globally attracting, 22.5< a < 43) and

la (quaziperiodicity, 43< a c 54) were investigated in [28]; results are summarized in Fig.

1 and Fig. 2. Our preliminary catalogue for the intermediate vzduea of a, u s a < 117.s,

h presented in Fig. 3. It contaim a zequence of %minarm intervala and intervals with

complex oscillatory behavior:

14 = 54<a <67.5 : a .%cellular state global attractor

la = t37a5ca <93 : complex oscillatory behavior

J* = 93e a c 117.5: a 4-cellular state global attractor

17 = 117.5< a c 146.5 chaoe

Within theue intervala, we evidence canonical vector field bifurcation leading to quazi-

periodic motion and chaoa, and systematically explore multiple basina of attraction, in a

low-dimensional situation. The mechanisms which we pin down are truly generic for both

onzet of chaoz and relaxninarization crises in regimes of “strong” chaoa (see part TV), and

more representative than the bifurcations in 11- JSstudied in [28]. The claaaical homoclinic

loop bifurcation from a saddle point observed around a z 22.5 and a x 49 do not reoccur;

repeated onzeta of oscillatory, and/or chaotic regimee are in fact triggered by perturbed

homGclinic loops burzting from spiral hyperbolic pointa. 2’1tori (invariant circlez) are

usually metaztable. Strange !ixed pointa are the rule rather than the exception, spanning

the range from U = 49.5 through a=93. A traveling beating wave obsreved in Fig. lb

from a=49.5 to a=54 b a true harbinger of such a strange (two-humped) tied point. Also,

there is a wealth of reverse bifurcation, and attractor which alternatively destabilize and

restabilize again at some larger a! Laat, the crisis of chaoa observed at a=93 ia likely

triggered by the two-humped strange fixed point sitting on the baain boundary of the

chaotic attractor and shadowing the turbulent time series through multiple intermittenciez.

Such low-dimensional mechanisms pervade the strongly chaotic regimes of part IV.

In the discussion below, the ‘energy” is the integral of (us)a and the ‘energy in mode

k“ is the modulus of the @ Fourier coefficient.

The trimodal cellular state Gs(a) is a global attractor in 14until it bifurcate at a=67.5.

The bifurcation is neither of Hopf type, nor through a claasical homoclinic loop. This is

explored in Figs. 4-7, where w = 63(67.5) = 2.95co#3z + 0.44cos6z +‘ ”.. Figure 4 heralds two

regimes: at roughly periodic intervals the orbit burzta away on the unstable manifold of

tis and puffs into a spiked intermittence at a much lower energy level; then it opirals back

around the hyperbolic point fis. Figure 5 confirms that the energy in the flint mode is low

8



during the small oscillations around the spiral hyperbolic point fia; the bursts have a much

higher level in the first mode. Small amounts of energy trigger the bursts around the loop.

The energy in the third mode, Fig. 6, is the mirror image of Fig. 5. It oscillates in a

small neighborhood of 2.9, before bursting away from C9into sharp spikes at much lower

levels. The energy in mode 6 (Fig. 7) is substantial in the vicinity of iis, at a level of 0.4.

It clearly shows two different scales in the dynamics of the orbit next to tis; first very high

frequency, small amplitude oscillations around iis, followed by slower spiraling around the

trimodal point. This bifurcation has many of the characterieticfi of a perturbed Shilnikov

homoclinic loop [25]. This is a homoclinic loop associated with a spiral hyperbolic point

and persists until u=72.

The Shilnikov loop is quickly deformed into a homoclinic tangle, as evidenced in Figs. 8-

10 (a=68, initial conditions continued from a =67.5). The duration of the chaotic excursions

is now comparable to the transit times in the vicinity of tig, any semblance of periodicity

is lost and spiked bursts occur at random times (Fig. 8). The energy in mode one (Fig.

9) demonstrates that the high frequency, small oscillations around @ prevail upon the

spiraling timewcale dynamics; a computer movie “zoom” onto such time intervals reveals

transient dynamics hardly distinguishable from those on a metastable circle (Torus Tlj.

Energy in mode 3 (Fig. 10) confirms the picture of an homoclinic tangle between the

stable and unstable manifolds of the spiral hyperbolic point G, with chaotic time series

interrupted by random intermittencies around tis. The above generic picture will permeate

the onset of chaos at a=l17.5.

At a=72, a strange iixed point u*(a) suddenly becomes a global attractor. It is not

related to any cellular state; its Fourier expansion is rather flat, with energy present in all

first six modes (~= 4.24). U*has a typical profile with two humps, a large one amd a small

one (Fig. 11). An entirely similar twmhumped structure has been observed as a traveling

and beating wave, from a=49.S to a=54; the strange fixed point U*(a)has indeed undergone

a reverse bifurcation back to stability! It persists as a global sink, until it undergoes some

kind of Hopf bifurcation at a=83.75. As the contour levels show in Fig. 12 (a=84.25,

initial data by continuation), the rapid oscillations are strictly localized in space, cm the

top of the higher hump. Such a spatio-temporal localization is a forerunner of spatially

concentrated zones of turbulence. This peculiar sxample of spatial complexity does not

seem to bc ruled by a standard Hopf niechankm. At a=86, the localized oscillating pattern

bifurcates into a traveling beating wave. The contour levels plot (Fig. 13, a=87, initial

data by continuation) manifest fast oscillations still localized on the higher hump, At

a=89, the picture reverts to chaotic behavior, as if the “horseshoe” attractor observed

9



from 68 s a <72 had undergone a baain boundary crisis. The interval IS ends at a=93,

where the 4-modal cellular state

64 = 2.94coL14z + 0.2&088z + . . . (3.1)

mutates into a global sink. The apparent crisis of chaos at u=93 iE further complicated by

the fact ti4 has a limited, albeit small basin of attraction for ~.6 < a s 93. This suggests

basin boundary crisis [19-24]. Chaotic time series both prior to and at the crisis exhibit

multiple intermittenciea around some hyperbolic point, which is obligatory non cellular

(since fi4is a local sink). This is illustrated at a=91, with initial data w = ~~=l(cosjz+tinjz),

Figs. 14-17. In Fig. 14, energy in mode one go- through two broad intermittencies; these

are characterized by small amplitude, high frequency oscillations at an average level of 4.

Within the intermittent windows, energy in mode 2 (Fig. 15), at an average level of 2.5,

is comparable to mode 1. The (average) Fourier energy spectrum at the interrnittenciee

is significantly comparable to that of the strange point u-(a). Movies unmistakedly betray

the tw~humped structure. Energy in mode 3 (Fig. 16) confirms high frequency, small

scale oscillations whenever the orbit wanders close to the stable manifold of U-;as if the

boundary of the basin for the chaotic attractor were vested with multiple fingers close to

that stable manifold. Energy in mode 4 (Fig. 17) confirms that u* site on the boundary

delineating the basins of fif and is responsible for this basin boundary crisis [1*24].

The interval 14 of global stability for tif ends at a=l17.6. In [28] we suspected some

homoclinic skeleton to underline the omet of chaos at a=l17.5. We can now give a much

more precise microscopy of this bifurcation. At a= 117.5, we took for initial data

;4 + O.ln”nz = O.lm’nz + 2.996 c084z + 0.43c088z + . . . . (3.2)

The time series in Figs. 18-20 are remarkably akin to, albeit more chaotic than those for

the perturbed Shilnikov loop in Figs. S11; just replace 63 by ih. The energy (Fig. 18)

undergoes very high frequency oscillation within intermittcncies close to the quadrimodal

state, before exploding into chaoe with an higher average energy. The energy in mode

2 (Fig. 19) dips at very small levels in the vicinity of dd. The energy in mode 4 (Fig.

20) clearly shows the orbit nearly locking onto some metastable torus, around 2.9 before

bursting into homoclinic tangles. For the energy in mode 8 (Fig. 21), the intermittencies

center at 0.4; this confirms the picture of a perturbed Shilnikov tangle around fi4, as a

mechanism for onset of chaos. As computed by Manneville [3s], the Lyapunov dimenoion

of chaos iE slightly larger than 6 in this case.

The bifurcations of the K-S equation, unraveled in this part, occur on low-dimensional

inertial manifolds. Multiple fommrd and reverse bifurcation of several fixed points are
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entangled in a web of Tori, together with ‘strange~ hyperbolic points. For these regimes,

we conjecture that it may be possible to construct a simple reduced normal form for the

ODES on the inertial manifold using the unstable manifolds of fig(a), (fi,(a) and the two-

humped ‘strange” Iked point U“ (a).

N. A GEOMETRIC CONSTRUCTION OF TEE INERTIAL MANIFOLDS

The K-S equations possess inertial manifolds ~. These are positively invariant regular

objects toward which all solutions tend at (at least) a uniform exponential rate. Let H

be the Hilbert phase space (usually a Sobolev space) and let s(t)uO) denote the tr@ctory

(solution of the system) starting at t = o from UO.By an inertial manifo!d for S(t) we mean

a set ~ satisfying —
E h ● finitedi.measioual Lipchitn muifold (4.1)

(4,2)

Them exists a constut k mch that for OVOIYUOCH, them axutsto 20 (4.s)

(uniformly for UOin bounded sets) such that, fort z k

CM(9(:)* , ~)

We shall present here a geometric method of constructing ~ for a class of dissipative

systems large enough to contain the one d~.mengional Kur-oto-Sivashinski and one and

two dimensional parabolic reaction diffusion equations. Full details will be found in a

forthcoming paper by P. Comtantire, C. Foiss, R. Temam and B. Nichols [6]. The K-S

equation can be restated abstractly as:

du
~ + hf(u) = O with (4,4)

~(u) - Au+ R(U) (4,5)

where A is a positive selfadjoint operator and R(u) is a lowar order nonlinear nonhomog-

eneous term. We denote by (Aj)j the increasing sequence of distinct eigenvalue of A and

J“ (Ji) the nondecreasing mequenca of eigenvaluea counted with their multiplicities. The

linearized around u(t) of N(u), will be denoted by A(t)

L(t)v - :(u(:))u , A(t)= A + L(t) (4.8)

The key idea is to use the transport properties of finite dimensional contact elements.

By a finite dimensional contact element we mean a pair (uo,l%) with u. c H and J% a
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5nitidimemional proj~tor (orthogonal projmtion operator) in H. Oneregards POas the

projector on the ttmgent space at uo to an infinitesimal surface paasing through ~. The

timport under s(t) of this surface induces the transport of (uO,Po) according to

u(t) = S(t)uo (4.7)

-d-P tdt ()+(f - PAP + P(t) A(t)”(l - P(t)) = O (4.8)

P(o) = a (4.9)

where A(t) is the linearized (O6) and A(t)” in the @oint in H. For any N dimensional

contact element (u, P) we introduce the quantities

A(u) = A4az{(Ag, g)llgl = 1, Pg = g , g E D(A)} (4.10)

A(u) = Min{(Ag, g)llgl = 1, Pg = O , g E D(A)} (4.11)

where (,) and II dsnote the scalar product and the norm in H; D(A) is the domain of A.

It follows from the minimm and mimimin theorem that A(u) z AN , A(U) < AN ~1. These

two quantities meanure the poaitkm of the linear space ker(~ - P) relative to the fixed

orthonormal syutern of coordinate formed with the eigemwctors (Wj) of (Awj = AJwj). We

aasume that ~(t) satisfy bounds of the type

lL(t)u12 < K,Iv12 + Jf21Au1i412+ KsIA:1212 (4,12)

lL(t)”u12 s X,IV12 + XalAu’/’la + JK31A~/21a (4.13)

reflecting the fact that R(U) in aasumed to ba of lower order (half the number of deriva-

tive at most) than A. Wc derive under these assumptions differential ineq ~alitien for the

transported quantiti= A(t) M A(P(t)) A = A(P(:)). If the !inear diffusion operator A has gaps

in the spectrum which are huge with respect to constant Kl, K2,KS more precisely if

(Am + Am+l )
I/a

(Am+l - Am)’ > K1 + Ka
+K3Am+Am+l

2 2
(4,14)

for some m, then we can deduce the powerful spectral blocking proposition:

Theorem 4.1 (Spectral blocking property),

Let ~(:) = ~(~(t)) A(:) = A(P(~))be defined in (4.10), (4.11) for P(t) solvlng (4.7)-(4,9),

then
Am + Am+l

if for som~to 20 A(to) < ~ (C4)

for some m satisfying (4.14) t,hen A(t) < WS for all t 2 to,

Am + Ang+l
if for somo to 20, A(tO)> a (b)

12



for some (possibly different) m satisfying (4.14) then ~(~)> _ for all t z tO. Thus

A(t) (respA(t)) cannot cross large gaps in the spectrum of A from the right (reap left).

We note here that although a condition of the type A(tO)> ~~ can be realized

only if the dimension N of P(to) is large enough (A~+l > ~) conditions of the type

A(to) < ‘~~ do not impoee restrictions on the dimension of P(tO) provided the set of

m’s for which (4.14) is valid is not founded. In particular the blocking of A(t) in the N = I

caae has important consequences. Let us denote by Pm the spectral projector of A on the

span of WI,. . . , w~. Let u consider the cone in H

c = {wdrll(~ - P’)wl $ ;lPnw)}

We prove the strong squeezing properties.

Theorem 4.2 Let n be large enough. Let u(t) be a solution of

(h

z +A(t)w = 0,

w(o) ~ W(J,

(4.15)

(4,10)

the linearized equation around s(t)w = u(t). If for some to z o u(to) belonge to C, then for

all t 20 w(t) belongs to C. Moreover, the following alternative holds:

Iw(t)l < lw[O)@p(-Kt) for sII t >0 (a)

or there exists a finite

to >0 muchthat the irregularity in (s) holds for t S tO ●d for t 2 tow(t) bdongs to C. (b)

The precise condition on the size of n is given in [8], but essentially the requirement

is that L > 15(A~+ A~+I) for oome n satisfying the gap condition (4.14) Theorem 4.2 ia a

direct consequence of Theorem 4.1 for N = 1. Using a slight modification of Theorem 4.1.

We obtain, also,

Theorem 4.3 (Wrong squeezing property) let n be large enough (name conditions aa In

Theorem 4,2), Let w(t) = ~(t)w - s?(t)u be the difference of two molutlons. Then the conclu-

sions of Theorem 4.2 hold for w(t). The otrong squeezing property waa edablinhed for the

Kuramoto+lveahimkl equation In [15]. The consequence of this property regarding the

universal attractor are mtudled further. We prove

Theorem 4.4. If n is large enough to Insure the valldlty of Theorem 4.3 then the projector

P. h In,jectlve when restricted to the univereal dtractor X and Ite Inveme lo Lipschlts.

More precinely

i(~- pn)(~ - V)l5 ~!~m(~-U)l

13



for every x,y in X.

Theorem (4.4) follows eaai!y from Theorem 4.3 but is an important fact. It was known

that because X has finite fractai dimeneion, there arc many projectors that are injective

on X; however, Pm is an important explicit one.

Denoting C.,X = ZCX{U G Hll(I - P.)(u - X)1 s ~lP.(u - Z)I} we deduce from Thearem

4.3 that S(t)Cm,x c C.,X if n ie large enough, that X c Cm,X (Theorem 4.4) and that aa

long m a solution ~(~)w rernaius in the complement of C?n,x,its distance to X decreaaes

exponentially. Finally, we conclude by showing that the complement of a large ball in H

is included in C.,x, For a further consequence of strong squeezing we coneider a smooth h’

dimmmional positively invariant surface. We aeaume that it is “blocked” in the sense that

A(u)> A~+:”+l for u E ~ and A(U) = A(P(u)) with P(U) the projector on the tangent space at

u to ~. We show that under theue assumptions, aa long aa the distance from come solution

L$(t)Wto ~ in attained on ~, it must d-=y exponentially (at an explicit uniform rate).

We now proceed to deecribe the initial data for our construction. They form the

smooth oriented boundary r of an bounded, open, connected Met D included in PN H. N

is choeen sufficiently hrge such that AN+1 - AN >0 in a gap satisfying (4.14) and such

that AN+, > 5(J~ + ~~+,) with a satisfying also (4.14). We denote at each net by P(u) the

projection oh the space N(U)R+ n(r) where?’.(r) is the tangent space at u to r; we design

by V(U) the outward unit normal to r and we net A(U) = A(P(u)), A(u) - A(P(u)). Then the

propertied of r are
AN+ ~N+I

A(u) < ~ for ●y Ucr (1)

AN+~N+l
A(u) > ~ for w td (II)

(N(u), Y(u)) >0 for any tiar (I!x)

r c CN,X (w)

h WY UG r , Af(upt+n(r) c C (v)

Properties (I) and (11) =oert that the initial surface r is ‘blocked”. Property (111)ehowo

that $s(t, uO) , at any ~ c r points toward the interior of D. In applications r is usually

a eimple explfc~! met: a large sphere for the Kur-mot~Sivashineki equation.

Uitlmateiy, we une the epectral blocklng, otrong ~quem!ng ●nd volume decay properties

in order to construct starting from r the inertial manlfoldo. We denote by ~ the Integral

manifold having r M initial data:

~ - U s(t)r (4t 17)
t>o

We eutablish flrnt using (I) and the npectral blocking property the fact that projectkm PN

d any point of ~ h a regular map (baa Invertible JacobIan). From the results In Theorom

14



4.4 and condition (IV) for l“ it follows that ~ c C~,x. Since we may take r to lie far away

from X; it follows that ~ nx = # and thus, PN ~ npNx is void. We show that the cloeure

af PN~, ~~ is included in the union of the disjoint sets PNX u r u PN ~. We use next the

isoperimetric inequality and the exponential decay of surfacea of dimension larger or equal

to N -1 to show that ~ o D. From the backward uniqueness theorem for solutions of

an equation and (III) we deduce that for Pin a neighborhood of r in D the fiber pi 1{PI n Z

consistu of a single point. Since PN “mregular at ~ and since PN ~ is connected we deduce

that PN restricted to ~ is injective. It follows that D = PN ~ UPNX u I’ and we can define

on D the inveree @of PN, @ : D + E,* = {identity}. We show, using the strong squeezing
r

property and (V) (Theorem 4.2) that

(4.18)

for any r,, ra in D. Finally we show using (II) and the spectral blocking that for any

UO,dist(s(t)w ~) decreaeea exponentially. We conchde that ~ is an inertiai manifold
satisfying, beside properties (4.1), (4.2), (4.3), and (4.19) ~ in the graph of an expiicit

Lipschitz map (4.20) ~ is the ciouure of a smooth manifold (21) the N-dimensional volume

of ~ is finite.

This concludes the outline of the construction of the integral irertial manifoid. Needless

to say, it lends itself to faat and robust numerical algoritms. Full details may be found in

[8].

V. CONCLUSION

A iow dimensional vector field nkeieton underpinn “strong” chaoa for the K-S modcim of

turbuient interfaces, Heretofore it wao unsuspected, because of the extreme numericui

sensitivity of chaoa in dissipative PDEII. Indeed, low precision methods of integration ba.ed

on second order schcmea [31] are adequate to compute tablen of Lyapunov exponents; they

waeh out the subtie architecture mirrored by repeated bifurcation and intermittencies.

IIigh precision, high speed, parallel cod- ~n future paraliei architecture machines ahaii

pluy a cruciai role in definitely bridging the gap between strong dynamicai chaos and fuliy

developed turbulence. From a theoretical view point, the fact that a nmaii, yet exotic

zoo of hyperbolic points and Tori generates etrong chaoa supports the current anaiytic

work initiated [6] by C. Foiaa, P. Comtantin, R. Tomam and B. Nichoio, We pmsentiy

aim at constructing optimtl inertiai normai formn for the dynamicai vector fleids on tho

inertiai manifoldn at different a-regimes, We suspect that the zoo of dynamically reievant

strange fixed points will be enhanced by specimenm with a Cantor-like structure in space

(this hea been proven by Micheiaon [45], for a - ao, for K-S). IIence, upatiai chaoa wouid

intermingle with temporal chacta aa the bifurcation parameter ia increaaed to another order

of magnitude.
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